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We present a theoretical model for the wave-induced drift and horizontal deformation
of an oil slick. The waves and the mean flow are coupled through the influence of
the mean flow on the concentration of slick material, which in turn determines the
damping rate of the waves and hence the transfer of momentum from the waves to the
mean flow. We also briefly discuss a simplified version of the model that can be used
when remote sensing data are available. With this simpler model the wave-induced
forcing of the mean flow is obtained directly from observations of the wave field,
hence knowledge of any specific slick properties is not required.

1. Introduction
Surface capillary-gravity waves are effectively damped by an oil slick due to the

greatly increased shear in the surface boundary layer caused by the slick (Lamb 1932;
Dorrestein 1951). When the waves are damped, a part of the forward momentum in
the waves is transferred to a mean flow/drift current. The wave damping effect is
most pronounced for capillary-gravity waves that have typical wavelengths of 1–10 cm.
Since the backscatter from the sea surface is mainly due to these short waves, a slick
is represented as a dark patch in radar images, which makes radars a useful tool for
detecting oil spills. The presence of an oil slick can also be noted as a profound dip
in the high-frequency part of the wave spectrum (Alpers & Hühnerfuss 1988).

For a large slick there are no short waves in the interior, the wave damping effect
being too strong, so that only the long waves (of more than a few meters length, say)
can pass relatively unhindered. Thus, the main transfer of momentum from the waves
to the mean flow takes place in a narrow band that runs along the edge of the slick,
and the forcing of the mean flow will be much stronger in this band than that in the
interior (see figure 1). Furthermore, many types of slicks possess a strong resistance
against a change in total area, but a limited resistance against a change in shape (e.g.
Hansen & Ahmad 1971). Since the induction of drift currents will vary greatly over
the slick, we may expect that the horizontal shape of the slick will change on the same
time scale as that of the slick drift velocity. We will refer to this change in shape as a
deformation of the slick. In previous studies, the wave-induced changes in surfactant
concentration have been neglected as far as the wave dynamics are concerned (e.g.
Christensen 2005 and references therein). It is the purpose of this paper to examine
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A B

Figure 1. Short capillary-gravity waves are effectively damped in the region A. The
wave-induced stresses in this region will vary in both size and direction, with the effect
that the horizontal shape of the slick will change with time. Although the longer waves can
pass relatively unhindered (propagating from left to right), they will induce stresses in the
propagation direction that will be approximately constant in both regions A and B. Assuming
that the time scales of the drift and the deformation are similar, the time development is likely
to be as indicated (at least qualitatively).

the two-way coupling between the waves and the oil slick and to present a more
complete model for the drift and deformation of the slick due to surface waves.

In this study, we therefore focus on the small-scale dynamics in the surface boundary
layer, and we apply a fairly simple description of the wave field. That is, we do not take
into account the stochastic dispersion of slick material in a random wave field (e.g.
Herterich & Hasselmann 1982; Balk 2006; Vucelja et al. 2007), but in our simulations
we assume that all components of the wave field are completely known. Neither do we
consider steep waves prone to breaking, nor other effects of wave-induced turbulence,
such as Langmuir turbulence (e.g. McWilliams et al. 1997; Polton & Belcher 2007).

In this paper, we model the oil slick as an insoluble elastic monolayer. The
procedure, however, is general and the validity of the model can be extended by
formulating alternative conservation laws for the slick material. We build our theory
on results for the Lagrangian mean motion based on the method of Weber (1983).
For the mean drift current we make the usual eddy viscosity assumption, allowing
the eddy viscosity to vary with depth and the waves to be (implicitly) represented
by a directional wave spectrum (Jenkins 1989). What we obtain is a new model for
the drift of oil slicks in which the effect of the drift velocities on the slick properties
are accounted for. The results are correct to second order in wave amplitude and
represent the lowest order drift problem. That is, all mean velocities scale as the
Stokes drift, which is proportional to the wave steepness squared times the phase
velocity of the waves. In particular, our analysis is valid for small wave steepness
aκ � 1, where a is the wave amplitude and κ the wavenumber, and when the ratio
between the oscillatory surface boundary layer width d and the wavelength is small,
expressed by κd � 1. For the short capillary-gravity waves considered here, the latter
ratio is of O(10−2) (e.g. Dorrestein 1951). Since the analysis is based on a direct
Lagrangian approach the results are strictly speaking only valid for a short time.
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Numerical simulations for a short time period show that the waves rapidly cause a
significant redistribution of slick material.

The outline of this paper is as follows: In § 2, we present the model, formulating the
equations governing the slick properties, the waves and the mean flow in § § 2.1, 2.2
and 2.3, respectively. In § 3, we show numerical solutions for the mean concentration
of slick material, the wave-induced stresses on the slick and the drift and deformation
of a slick for a few simple cases. Further, in § 4.1 we discuss the combined use of
remote sensing data and a simplified version of the model. Finally, § 4.2 contains
concluding remarks and some suggestions for future studies.

2. Mathematical formulation
The fluid motion is three-dimensional, and we take the x- and y-axes to be aligned

with the undisturbed sea surface. The z-axis is vertical and positive upwards, and
the unit vectors in the (x, y, z)-directions are (i, j , k), respectively. We assume that
the fluid is incompressible and homogeneous with constant density ρ. The system
is rotating about the z-axis with an angular velocity f/2, where f is the Coriolis
parameter. Here, we denote periodic quantities with zero mean by a tilde ˜( ), while
mean values are denoted by an overbar ( ). The depth is taken to be infinite. There
are two different time scales in this problem. One is proportional to the wave period,
and the other is the time scale of the much slower wave-induced drift velocities. The
effect of the Earth’s rotation can be neglected as far as the waves are concerned
(Pollard 1970), but the Coriolis force can be important on the longer time scale of
the drift, or if the slick is very large (Christensen & Weber 2005b).

Let the undisturbed surface level be given by z =0. We consider plane and
progressive surface waves, and write the wave field as a sum of Fourier components
ζ̃κ :

ζ̃κ = aκ (x, y, t) cos(kx + ly − ωκt + δκ ) + O
(
a2

κκ
)
. (2.1)

Here, κ =
√

k2 + l2 is the wavenumber, ωκ is the wave frequency and δκ is a random
constant phase shift uniformly distributed between [0, 2π]. The unit vector in the
direction of wave propagation is iκ = κ−1(ki + l j ). The sea surface is given by

z = ζ = ζ +
∑

κ

ζ̃κ , (2.2)

defining the mean surface elevation ζ (x, y, t), and the sum is taken over all the
Fourier components. This sum will in practice be substituted with the equivalent
integral representation for a continuous directional wave spectrum, but the above
notation will be used throughout for clarity. We assume that the wave amplitude and
propagation direction ‘upstream’ of the slick is known for each wave component. It
is clear that the slick will have a sheltering effect so that a wave that passes through
the area covered by the slick will re-enter the region outside the slick with reduced
amplitude. Since we consider plane waves, we will only need to match the wave field
in the interior of the slick with the external field at the edge where the waves enter.
As far as the waves are concerned no specific matching condition is needed at the
edges where the waves leave the slick. Note that the present analysis includes the case
of a non-contaminated surface. In the numerical simulations presented in § 3 we solve
the governing equations in the entire domain, so that also the drift velocities outside
this region are accounted for.
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The Eulerian and Lagrangian velocities at any particular point in time and space
must be equal. If the Lagrangian velocity of a particle starting from the position xL

at time t = t0 is uL(xL, t0), say, then the Eulerian velocity uE of the same particle at a
later time can be found from the relation

uL(xL, t) = uE

(
xL +

∫ t

t0

uL(xL, t ′) dt ′, t

)
. (2.3)

By using a Taylor series expansion (e.g. Phillips 1977, § 3.3)

uL(xL, t) = uE(xL, t) +

(∫ t

t0

uE(xL, t ′) dt ′
)

· ∇LuE(xL, t) + O(a3), (2.4)

where ∇L = ∂/∂xL. Substituting the Lagrangian coordinates xL with Eulerian
coordinates x introduces an additional correction term of O(a3), which we will
neglect here. Certain limitations for the validity of the analysis then apply, however,
which is further discussed in § 2.3.

For a fluid particle, the mean forward momentum associated with the wave (2.1) is
represented by the Stokes drift, which is the mean value of the second term on the
right-hand side of (2.4). For deep water waves the Stokes drift is given by

vS = u0exp (2κz)iκ , (2.5)

with u0 = a2
κωκκ . The total mean Lagrangian velocity vL is the sum of the Stokes drift

and a Eulerian component vE such that

vL = vE +
∑

κ

vS. (2.6)

The oil slick is advected by the horizontal Lagrangian velocity at the surface, which
we will denote by v

(0)
L .

2.1. Properties of the oil slick

The oil slick is represented by the concentration of slick material Γ (x, y, t). Here we
consider insoluble and elastic monolayers, although we discuss possible generalizations
in § 4. The dynamically significant slick variables are the surface tension σ and the
elastic modulus E. The elastic modulus is defined as

E ≡ − dσ

d(lnΓ )
. (2.7)

The relation between Γ and σ depends on the slick material and must be determined
from experiments (e.g. Mass & Milgram 1998). For our purposes it is sufficient to
assume that

σ = G(Γ ), (2.8)

and that G is a known function.
Because the slick is insoluble and stays on the surface at all times, the problem of

finding Γ can be reduced to a two-dimensional problem involving only the horizontal
surface velocities, that is, we project all quantities related to the problem onto the xy-
plane. We denote the horizontal component of the Eulerian velocity at the surface as
v

(ζ )
E . Applying the Reynolds transport theorem we then obtain the following relation

between the fluid velocities and the concentration Γ (for the equivalent Lagrangian
formulation see Weber & Saetra 1995):

∂Γ

∂t
= − ∇·

(
Γ v

(ζ )
E

)
. (2.9)
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For periodic wave motion ṽκ corresponding to (2.1) (see for example Hansen &
Ahmad 1971), we obtain by expanding ṽκ (z = ζ̃κ ) in powers of ζ̃κ :

ṽκ (z = ζ̃κ ) = ṽκ (z = 0) +
∂ ṽκ

∂z
(z = 0)ζ̃κ + O

(
a2

κωκ
)

= vS(z = 0)/2 + O
(
a2

κωκ
)
. (2.10)

We now assume that Γ can be split into periodic components and a slowly varying
component that incorporates the equilibrium value:

Γ = Γ +
∑

κ

Γ̃κ . (2.11)

From Weber & Saetra (1995) we obtain correct to O(a2) for the fluctuating
components:

Γ̃κ = (κΓ /ωκ )ṽκ (z = 0) + O(a2). (2.12)

From (2.6), (2.9), (2.10) and (2.12) we obtain correct to O(a2) that

D(0)Γ

dt
= −Γ ∇· v

(0)
L , (2.13)

where we have defined a material derivative for mean variables evaluated at the
surface:

D(0)

dt
=

∂

∂t
+ v

(0)
L ·∇ . (2.14)

Equation (2.13) for the mean concentration of slick material has previously been
neglected in theoretical studies of the wave-induced drift. The result is simple,
although not surprising given the similarities between the approach used here and
the generalized Lagrangian-mean theory of Andrews & McIntyre (1978). In fact, the
result (2.13) could have been obtained directly by considering (2.9) for Γ using the
wave solutions ṽκ evaluated at (x +

∫
ṽκ dt, ζκ ).

The mean displacement X of the oil slick is governed by

D(0) X
dt

= v
(0)
L . (2.15)

It is not strictly necessary to solve for X , since the properties of the oil slick are
completely determined by Γ . It is nevertheless useful to know the mean displacement.
If the material derivative in (2.13) is simply treated as a time derivative, the value of
Γ can be found by integrating the right-hand side forwards in time. Since the value
obtained is a Lagrangian quantity, it should be assigned to the position (x, y) = X
given by integrating (2.15) forwards in time in a similar way.

2.2. Properties of the waves

The wavelength of each component is λκ = 2π/κ . If the horizontal extent of the slick
is L, we require that L > λκ , for all wave components. For wavelengths approximately
equal to the slick length or longer it has been shown experimentally that the slick is
passively advected by the inviscid Stokes drift and the steady streaming corresponding
to a non-contaminated (slick free) surface (e.g. the discussions in Weber 2001; Wong
& Law 2003). For wavelengths that are about half the length of the slick or less, the
present analysis is valid (Law 1999; Christensen & Weber 2005a).

At the surface there is a thin oscillatory boundary layer of width γ −1
κ , where

γκ =
√

ωκ/2ν0 and ν0 is the kinematic (eddy) viscosity. This eddy viscosity will in
general be different from the eddy viscosity used in the drift equations. The reason
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for this is that the wave motion has a much shorter time scale than the corresponding
drift velocity. The mean currents will therefore respond to larger turbulent eddies with
longer time scales than the turbulent eddies affecting the waves (see the discussion in
Jenkins & Ardhuin 2004). There is a net production of second-order vorticity in the
surface boundary layer, with a corresponding downward diffusion of mean momentum
(Longuet-Higgins 1953). It is by this mechanism that momentum is transferred from
the waves to the mean current, at a rate which strongly depends on the dynamical
conditions at the surface.

Due to the excitation of longitudinal elastic (dilational) waves in the slick, the
capillary-gravity waves are very effectively damped (Dorrestein 1951; Lucassen 1968).
All the essential details concerning the slick/wave dynamics can be described using a
non-dimensional elasticity parameter Eκ , defined by

Eκ =
Eκ2γκ

ρω2
κ

. (2.16)

For Eκ = 1 the wave damping has a maximum due to resonance between the forced
elastic wave and the capillary-gravity wave (Christensen 2005).

We will assume that the time dependence in aκ is due to the slow redistribution of
slick material and that the wave field outside the slick is steady in time. The rate of
change with time of the wave amplitude at any particular point must then be due to
the local change in slick material concentration. Hence the temporal growth/decay
rate β should scale as

β ∝ 1

Γ

∂Γ

∂t
. (2.17)

We may assume that the mean drift velocities change on the same horizontal scale
as the waves and that the mean drift velocity scales as the Stokes drift u0 (e.g.
Christensen 2005). If the spatial attenuation rate of the waves is α, we then obtain
from (2.13) that

β/α ∝ u0. (2.18)

For cases where both the spatial and temporal growth/decay rates of the waves are
important we have in general (Gaster 1962)

β/α = cg, (2.19)

where cg is the group velocity of the waves. Since u0 � cg , we will neglect temporal
growth/decay of the wave amplitudes in the linear part of the analysis and assume
our problem is one of spatial attenuation. For the derivation of the drift equations
we will treat aκ as steady in time, while in practice both the amplitude and the spatial
damping rate will be slowly varying functions of (x, y, t).

We assume that for each wave component the amplitude changes along the
propagation direction according to

∂aκ

∂ξ
= −ακaκ, (2.20)

where we have defined the directional derivative ∂/∂ξ = iκ · ∇.
The effect of slick elasticity is most pronounced with regard to the damping rate.

Defining F = 1 − 2Eκ + 2E2
κ , the damping rate is locally determined by the elasticity
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parameter such that (Lucassen-Reynders & Lucassen 1969)

ακ =
c(κ)
p κ2

2c
(κ)
g γκ

[
E2

κ

F
+

κ

γκ

2(1 − Eκ )

F

]
. (2.21)

Here c(κ)
p =ωκ/κ is the phase velocity and c(κ)

g = ∂ωκ/∂κ is the group velocity of the
wave component in question. The elasticity parameter is in turn locally determined
by the concentration of slick material Γ . In practice the value of E will be obtained
from (2.7), (2.8) and (2.16) using the mean values σ and Γ .

The ratio between the wavenumber and the inverse oscillatory boundary layer
thickness is κ/γκ and is typically of the order 10−1 to 10−2 for capillary-gravity waves.
Wave dispersion is given by

ω2
κ =

[
gκ + (σ/ρ)κ3

]
(1 + O(κ/γκ )), (2.22)

where g is the acceleration due to gravity, and the negligible O(κ/γκ )-term is due to
the presence of the slick (e.g. Christensen 2005). The fact that the slick elasticity does
not have any significant effect on wave dispersion shows that gravity and surface
tension are still the dominating restoring forces in the vertical direction, even for a
contaminated surface.

2.3. Properties of the wave drift

As shown in the previous section, the wave amplitude variation over the slick can
be determined once we know the concentration of slick material Γ . Now we need
to find the Lagrangian surface drift v

(0)
L to close the problem and solve for Γ . As

in the previous section, we will not go into details concerning the derivation of the
governing equations, instead we apply known solutions for the Lagrangian mean
motion. A brief overview is also given in the Appendix.

While the linearized equations of motion are formally identical in the Lagrangian
and Eulerian descriptions, it is not so for the mean drift. It is necessary to apply some
sort of surface-following coordinates in order to find the correct forcing terms for the
mean drift velocities because the width of the surface boundary layer is usually small
compared to the wave amplitude (Longuet-Higgins 1953).

The Lagrangian drift velocity can in general be split into three different parts (e.g.
Craik 1982):

vL = u +
∑

κ

(vS + vν). (2.23)

Here vν is the steady streaming in the oscillatory boundary layer, which can be found
from a detailed analysis in Lagrangian or curvilinear coordinates, and u is a transient
Eulerian drift current. Due to the waves there is a net production of vorticity in the
oscillatory boundary layer that causes a mean stress on the slick. In the absence of
external forces, this stress must be balanced by the viscous shear due to the Eulerian
mean current u, and momentum spreads downwards by turbulent or viscous diffusion.
If a direct Lagrangian approach is used, we find that the horizontal drift velocities to
O(a2) are governed by an equation of the form (see Appendix)

L{vL} =
∑

κ

L{(vS + vν)} + P (h) − f k × vL, (2.24)

where L{ } is a linear operator in t and the Lagrangian space coordinates, and P (h)

is a second-order pressure gradient force due to changes in the mean surface level.
The Stokes drift and the steady streaming are thus particular solutions of the drift
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equation. Both the first two terms vS and vν on the right-hand side of (2.24) are
obtained from the linear solutions. By use of (2.23) we obtain from (2.24)

L{u} = P (h) − f k × vL. (2.25)

At this point we make use of a property of the transformation between the Eulerian
and Lagrangian descriptions, namely that

x = xL + O(a), y = yL + O(a), z = zL + O(a), (2.26)

where (xL, yL, zL) are the Lagrangian space coordinates (Pierson 1962; Weber 1983).
Thus, we will take the O(a2) Lagrangian equations of motion and continuity and
simply replace the Lagrangian coordinates with their Eulerian counterparts. The
error we make will be of O(a3), and we obtain an expression for the Lagrangian
momentum balance, recast into Eulerian coordinates, which is correct to O(a2). By
using this substitution, the validity of our model will be limited to a time period
proportional to (aκκωκ )

−1. We obtain, however, an expression for the Lagrangian
momentum balance, which is more correct from a Newtonian point of view. It should
also be pointed out that the relevant forcing terms can also be obtained by use of
curvilinear coordinate systems (e.g. Law 1999) or a GLM-approach (e.g. Broström,
Christensen & Weber 2008), for which the short time limitation does not apply.

For the spatially damped surface waves we considered here, we have

L =
∂

∂t
+

∂

∂zL

(
ν

∂

∂zL

)
≈ ∂

∂t
+

∂

∂z

(
ν

∂

∂z

)
. (2.27)

Here we have introduced a turbulent eddy viscosity ν that may differ from the effective
viscosity that causes wave damping (see the discussion in § 2.2, and also Jenkins &
Ardhuin 2004).

If we neglect the contribution from the steady streaming in the Coriolis force, the
equation governing u becomes

∂u
∂t

− ∂

∂z

(
ν
∂u
∂z

)
+ f k × u = −g∇ζ − f k ×

∑
κ

vS. (2.28)

This equation is essentially equivalent to that of Jenkins (1989), the exception being
that we allow for a horizontal pressure gradient force. Also, Jenkins models the
momentum transfer from the waves to the mean flow with a source term in the
momentum equation. Here we follow Longuet-Higgins (1969) and force the mean
flow through a virtual wave stress applied at the surface.

It should be noted that we have neglected any nonlinear term that may originate
from products between different wave components. It has been shown that roll motion
is induced in the case of intersecting waves of equal length and phase (e.g. Melsom
1992), which for instance could have some effect on some of the numerical examples
shown later on. Intersecting waves produce a pattern of standing waves that gives
rise to a spanwise periodicity in the forcing terms. Craik (1982) has shown that a
unidirectional flow is unstable to such disturbances in the forcing. The roll motion is
a consequence of the periodic forcing and continuity, and hence the time needed to
develop this motion is much longer than the wave period. The neglect of this effect
implies that we do not allow the waves to locally cancel or amplify each other in
accordance with the pattern of standing waves they produce. Apart from the practical
difficulties involved in properly calculating all the forcing terms (for instance, we need
to know the phase-constant δκ of each component), the two main reasons for not
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including this effect here are: (i) The waves induce relatively rapid changes in the
slick properties, and the properties of the wave field change accordingly. Hence the
forcing of the mean flow at any particular point is not steady in time, but can be
assumed changing on a time scale similar to or less than that needed to establish
the roll motion. (ii) The wave-induced currents are vertically sheared, hence even
if roll motion starts to develop through a deeper layer in some region, the slick
will eventually drift away and further development will be inhibited. Nevertheless,
spanwise periodic motion has been observed in the laboratory in situations when the
slick has been prevented from drifting (e.g. Mockros & Krone 1968; Gushchin &
Ermakov 2003), and the possibility that the flow can be unstable should therefore be
kept in mind, in particular with regard to large and slowly drifting slicks.

For deep-water waves the equation of continuity to O(a2) is†

∇ · vL =
∑

κ

∂

∂t

(
a2

κκ
2e2κz

)
. (2.29)

It follows that the Lagrangian mean drift current in general is divergent, and
consequently the mean surface elevation is not always equal in the Eulerian and
Lagrangian descriptions (Longuet-Higgins 1986). Neglecting the contribution from
the boundary layer streaming, we define the Eulerian transport ME and the Stokes
transport MS as

ME = ρ

∫ 0

−∞
u dz, (2.30a)

MS = ρ

∫ 0

−∞
vS dz. (2.30b)

Since the vertical velocity at the surface to O(a2) is given by ∂ζ/∂t , we obtain from
(2.29) by vertical integration:

ρ
∂

∂t

(
ζ −

∑
κ

sκ

)
= −∇ · (ME +

∑
κ

MS), (2.31)

where we have defined sκ = (a2
κκ)/2. The quantity sκ is the difference between the

Eulerian and Lagrangian mean surface elevation (e.g. McIntyre 1988; Jenkins &
Ardhuin 2004). We note that a time-dependent wave field will in general contribute
to (2.31) both through MS and sκ , while the latter contribution vanish if the waves
(and hence the slick properties) do not change with time.

To solve for u we need two boundary conditions. First, we must require that the
velocities tend to zero at great depths:

u → 0, z → −∞. (2.32)

The dynamic boundary condition at the surface is (Weber & Saetra 1995; Christensen
2005)

ρν
∂u
∂z

=
∑

κ

τ κ − ∇σ, z = 0. (2.33)

† This result follows from the equation of continuity in the Lagrangian description of motion,
see for example Weber (2003), his equation (2.5), which is our (A 8). The same result can also be
obtained using GLM theory, see for example McIntyre (1988), his equation (1) with ξi,i = 0.
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There is a constant redistribution of momentum from the waves to the mean flow due
to the dissipation of wave energy in the boundary layer. Here we have introduced the
virtual wave stress τ κ to represent this redistribution (Longuet-Higgins 1969, also see
the Appendix for details). The virtual wave stress can be connected to the momentum
loss in the waves. We will make use of the mean wave momentum equation of Weber
(2001), which relates the virtual wave stress to the mean wave momentum flux

τ κ = −c(κ)
g

∂ MS

∂ξ
= ρ

(ακ

κ

)
c(κ)
g u0 iκ . (2.34)

Here we have made use of (2.5), (2.20) and (2.30). With (2.34) we now have a complete
set of equations for the transient Eulerian mean drift u. To obtain an expression for
v

(0)
L correct to O(a2) we will also need the surface value of the steady streaming. For

the oil slicks we considered here, we have (Weber & Saetra 1995; Christensen 2005)

vν(z = 0) = u0

[
Eκ (4 − 5Eκ )

2F
− κ

γκ

]
iκ . (2.35)

The Lagrangian velocity at the surface is obtained by adding (2.35) and the Stokes
drift velocity to u such that

v
(0)
L = u(z = 0) +

∑
κ

[vS(z = 0) + vν(z = 0)] . (2.36)

With (2.36) we close the problem for the drift and deformation of the oil slick.

3. Results
We present here a few numerical simulations to illustrate the two-way coupling

between the slick and the waves. For simplicity, we have neglected Coriolis forces
and changes in the mean surface elevation, setting ζ =0. By (2.31) this simplification
implies that we neglect gradients in the volume fluxes. Since we only simulate the drift
and deformation during a short time interval (t < 20 s), the induced flows are quite
shallow and the spatial differences in the total volume transport are small. It should
nevertheless be noted that possible edge effects, in which mean surface level changes
can be important, are neglected (for example with regard to the so-called Reynolds
Ridge, e.g. Harper & Dixon 1974).

3.1. Configuration of the numerical model

A domain of 3 × 3 m has been considered. The oil slick is initially circular with a
radius of 1 m and centred in the domain. A Crank–Nicolson scheme is used to solve
(2.28). Equation (2.13) is solved using a first-order Rusanov scheme (Rusanov 1961).
The grid sizes have been chosen small enough to avoid effects of the discretization
on the solution. The horizontal grid size is 2 cm, while the vertical grid size is
approximately 0.5 cm. The time step used is 0.1 s, and the results were converged for
the total duration of the simulations.

In the simulations we have used a combination of three different wave components.
The wave field is characterized by a dominant wave propagating in the x-direction
with a wavelength λ=15 cm and an initial wave steepness aκ = 0.1 and two shorter
waves with λ=5 cm and with initial wave steepness aκ = 0.03. These two shorter
waves are propagating at an angle of ±45◦ to the x-axis (see the right panel in
figure 2). In the simulations we have imposed the wave field instantaneously on the
entire domain. For this reason we have also assumed that both the Stokes drift and the
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Figure 2. Left panel shows E(Γ ) from (3.1). Note that the slick elasticity has a maximum,
and tends to zero for higher concentrations (due to collapse of the monolayer). The right panel
shows the computational domain and the initial shape of the slick. The arrows illustrate the
propagation direction of the waves used in the simulations.

boundary layer streaming are present from the outset, using u(t = 0) = 0 as the initial
condition and u(z = − λmax/2) = 0 is used as bottom boundary condition. The flow is
assumed to be laminar, and the kinematic viscosity is that of water ν = 10−6 m2 s−1.

Function (2.8) that relates the surface tension and the surfactant concentration has
been constructed to fit the experimental results of Vogel & Hirsa (2002) for oleyl
alcohol, a chemical which is commonly used in laboratory experiments. From (2.7)
we have then computed the following relation between the elastic modulus E and the
mean concentration Γ :

E(Γ ) = 1
2
Γ σr�σs

{
1 − tanh2

[
�σs(Γ − Γm)

]}
, (3.1)

where σr = 33.9 m2 mg−1, Γm = 1.4 mg m−2 and �σs = 2.5 mN m−1. Function (3.1) is
depicted in figure 2.

3.2. Model results

To obtain the results shown in figures 3–5, we have only considered the dominating
wave that propagates in the x-direction. Figure 3 shows the concentration of slick
material and the slick elasticity for a transect along y = 0 m. The left panel shows the
initial values, which are symmetric with respect to the y-axis. The right panel shows
the values after 18 s, and it is clearly seen that this symmetry is lost. At the ‘upstream’
end of the slick, the gradients are smoother, which is due to the divergence in the
horizontal mean velocities: The velocities are higher under the slick. At the other end
of the slick there is a concentration maximum, and a corresponding maximum in the
elasticity. It should be noted that the initial concentration is rather weak, and the
value of the elasticity parameter Eκ is of the order 10−1.

The changes in the slick material concentration have consequences for the waves.
Figure 4 shows the damping coefficient from (2.21) both initially and after 18 s. Left
panel shows a transect along y = 0 m, while the right panel shows a transect along
y = 0.7 m. If the feedback from the mean flow on the mean concentration had been
neglected, the initial values would have been passively advected with the mean flow,
and the mean wave-induced stress exerted on any particular point on the slick would
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Figure 3. Spatial variation of the concentration Γ (dashed line) and the corresponding
elasticity E (solid line) along the x coordinate at y =0, using only the dominant wave
component. The left panel shows initial values, while the right panel for t = 18 s.
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Figure 4. Spatial variation of the wave damping coefficient ακ corresponding to figure 3.
Dashed lines show initial values, and the solid lines the values for t = 18 s. The left panel
shows the variation along y =0 m, while the right panel shows the variation along y = 0.7 m.

have been constant. As seen here, however, the concentration changes in such a way
that maximum wave damping is found towards the ‘downstream’ end of the slick.
Furthermore, the maximum value of the damping coefficient increases because the
mean concentration increases, and, hence, also the value of the elasticity parameter Eκ .
For higher initial concentration the wave-induced changes in mean concentration may
lead to lower values of the damping coefficient since this coefficient has a maximum
for Eκ = 1.

The surface stress in (2.33) that accelerates the mean flow contains two terms: the
virtual wave stress and the gradient of the mean surface tension. In figure 5 these two
terms are compared for a transect along y =0 m. It is evident that the mean surface
tension gradient is negligible, hence the dynamic boundary condition (2.33) is well
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approximated by

ρν
∂u
∂z

=
∑

κ

τ κ , z = 0. (3.2)

In figure 6 the x-component of the virtual wave stress is shown for two different types
of slicks. The left column shows results for an elastic slick, while the right column
shows results for an inextensible (inelastic) slick. If the slick is truly inextensible, we
obtain from (2.13) that the total area of the slick is conserved since the Lagrangian
surface velocities are non-divergent. In the inextensible limit E → ∞, the wave
damping rate becomes

ακ =
c(κ)
p κ2

4c
(κ)
g γκ

, (3.3)

which means that the damping rate is a function of the wave parameters only. This
value of the damping rate is sometimes used to calculate wave attenuation rates
and wave-induced stresses in real slicks (e.g. Phillips 1977, § 3.4). In the simulations
shown here, although the mean concentration may be changing, we only keep track
of the slick position using (2.15). Thus we actually simulate an inelastic slick that
can be deformed, which is of course not the case for the plastic sheets often used in
laboratory experiments (e.g. Law 1999). The use of (3.3) only implies, however, that
the wave motion is suppressed in such a way that a no-slip condition applies for this
motion, which can for example be the case in the marginal ice zone (e.g. Christensen
& Weber 2005b). In the upper panels only the dominant wave has been used, while
in the middle panels we consider all three components. In the lower panels we show
results for the two shorter waves. Judging from the differences between the upper
and middle panels we can conclude that the inelastic slick is quite insensitive to the
shorter waves. It is also clear from the lower panels that the effect of the shorter
waves is stronger near the slick edges, which is simply because these short waves
more quickly dissipate under the slick. The upper and middle panels indicate that the
elastic slick is compressed, while the inelastic slick attains a characteristic bell shape.
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Figure 6. The distributions of the x-component of the virtual wave stress are shown for two
different types of slicks and for three different combinations of the waves. The left panel shows
results for an elastic slick that initially had a constant concentration of slick material equal to
the initial value shown in figure 3. The right panel shows results for an inelastic slick. In the
upper panel we have only considered the dominating long wave component, while the middle
panel shows the results from using all three wave components. The lower panel shows the
results from using the two short wave components (note the different scales). All results are
for t = 18 s.

In practice, the slick may collapse in regions of strong convergence, and part of the
slick material can be mixed with the fluid below.

In figure 7, we show an example of slick deformation by plotting isolines for the
slick material concentration. The left panel shows the deformation of the elastic slick
from figure 6 under the influence of all three waves. As in figure 3 we can see that
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panel for t = 18 s. The maximum value of Γ is approximately 0.84 mg m−2. The dotted lines
show the initial shape of the slick/material surface. In the right panel, the solid line marks the
boundary of the material surface for t = 18 s.

the gradients are smoother at the edge where the waves enter the slick, but we find
a concentration maximum near the upstream edge that was not present when only
the dominant wave was considered in figure 3 (also compare with the left panels of
figure 6). The right panel shows the corresponding deformation of a material surface
element in the case of a clean water surface. The shape of this surface element is
also changed somewhat because of the viscous attenuation of the waves and the
corresponding mean drift velocities. However, the shorter waves have a stronger
influence on the elastic slick compared to the clean water surface and the former is
more compressed in the y-direction.

Our results are qualitatively in agreement with observations by Marmorino et al.
(2008), who used satellite imagery to examine slick motion characteristics. Although
they primarily considered natural sea slicks, the wave-slick dynamics are the same
(e.g. Mass & Milgram 1998). Marmorino et al. (2008) also found convergence zones
near the downstream edge and a divergence zone near the upstream edge of the
slick. More detailed comparisons between our results and their observations cannot
be made since we have not taken into account wind effects in this study. Our results
indicate, however, that observations of sea slick ‘banding’ and rapid redistribution
of slick material need not be only due to Langmuir circulation cells, but that the
wave-slick dynamics in the surface boundary layer may play an equally important
role.

4. Discussion
4.1. Oil spill surveillance and remote sensing

Remote sensing is often used to discover and monitor oil spills at sea. The wave
dampening effect of the oil causes a marked reduction in backscatter from the sea
surface, hence an oil spill can be recognized as a dark patch on radar images. A
major problem, however, is that it is difficult to distinguish between slicks made from
different materials. For instance, on a radar image a natural sea slick may look very
much the same as oil released from a ship. Without a means to determine what
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chemicals the slick is composed of, we cannot model the relation between the slick
material concentration and surface tension (2.8). We need to know this relation in
order to calculate the wave damping rates (2.21), which are subsequently used to
calculate the mean wave-induced stresses.

If the properties of the slick are unknown but observational data for the sea surface
elevation are available, a simplified version of the model can be constructed as follows:
From data of ζ (x, y, t) we can extract the wave spectrum and the wave amplitudes
aκ (x, y, t). The wave damping rates ακ (x, y, t) can then be directly computed from
these data even though we do not know any properties of the slick. From these
quantities we can calculate the virtual wave stress in (2.34) and force the mean flow
through the boundary condition (2.33). If we neglect the gradient of the surface
tension in this boundary condition and the steady streaming in (2.36), we have
effectively removed all slick parameters from the system of equations. We still retain
the influence of the slick implicitly through (2.34).

This approach is equivalent to that of Weber (2001) for breaking waves and Weber,
Broström & Saetra (2006) for the integrated wave-induced transports in the surface
layer of the ocean. This simpler model could prove useful for making short-term
forecasts (nowcasts) of oil spill trajectories in limited areas of special interest. In
practice we would need data of high resolution in both time and space. This is not
a serious limitation, however, since radar systems that should be able to provide
the necessary coverage are already in commercial use (for example WaMoS and
MIROS/Wavex).

4.2. Concluding remarks

The presented theory describes the two-way coupling between an oil slick and surface
waves. Provided that the rheological properties of the slick are known, a complete
set of equations governing the drift and deformation of an oil slick is given. In
traditional oil spill trajectory models the drift velocity of the oil slick is often taken
to be proportional to the wind speed/current speed (e.g. ASCE 1996), implying that
the stresses acting on the slick are horizontally uniform on smaller scales. As we
show here, this cannot be the case when waves are present since the wave-induced
stresses vary greatly over the slick. Furthermore, we show that the changes in the
slick material concentration caused by the mean flow lead to significant changes
in the wave properties, which has previously been neglected in theoretical models.
The presented theory is of course approximate and several important aspects of real
flows need to be further investigated. In particular we mention soluble slick material,
background currents and the influence of the wind.

For the case of soluble slick material, conservation laws for other types of slick
material may be formulated that can replace (2.9). We obtain a closed set of equations
as long as the concentration of slick material only depends on the waves and the
mean drift velocities, since we explicitly solve for these quantities.

It is also of interest to calculate the effects of background currents on the wave-
induced drift. Background currents will affect the wave frequencies and amplitudes,
and horizontally sheared currents will deform the slick. As background currents we
may also count the orbital velocities in long waves with wavelengths at least as large
as the slick.

Finally, the effects of the wind are important. The action of the wind may prevent
wave damping altogether even in the presence of an oil slick: both (2.21) for the
attenuation rate of the waves and (2.34) for the virtual wave stress will contain
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terms representing atmospheric forcing (Saetra 1998; Weber et al. 2006). While these
results should be relatively straightforward to incorporate in the present model,
there are other, more complex, mechanisms that must also be investigated. A direct
consequence of the suppression of the short waves is that the sea surface roughness
is locally reduced. Hence, the wind profile in the atmospheric boundary layer will
become horizontally non-uniform with possible consequences for the drift of the slick.
For example, Welander (1963) suggested that the reduction in sea surface roughness
creates a convergent wind field over the slick. The atmospheric boundary layer over
waves is a field of active research, and incorporating the effects of the wind will be
the next step in constructing a robust theory for the drift and deformation of an oil
slick.

The authors wish to thank Ms Giovanna Grosso for help with the numerical
solution methods, and Professor Jan Erik Weber for helpful discussions. KHC
gratefully acknowledges financial support from the Research Council of Norway
through Grant No. 171215.

Appendix. Lagrangian analysis

The presented theory is based on the results of a detailed analysis in which a
Lagrangian description of the motion is used. The details can be found in Christensen
(2005), but a short summary is given here for completeness.

In a direct Lagrangian approach we assign a reference position (xL, yL, zL) to
each fluid particle, and use these as independent space coordinates. The position
(X, Y, Z) at time t of a fluid particle then becomes a function of the Lagrangian space
coordinates, such that X = X(xL, yL, zL, t) and so on. The position of any particular
fluid particle is then written as

X = xL + x(xL, yL, zL, t), (A 1)

Y = yL + y(xL, yL, zL, t), (A 2)

Z = zL + z(xL, yL, zL, t). (A 3)

Similarly, for the pressure P we write

P = −ρgzL + p(xL, yL, zL, t). (A 4)

Spatial derivatives in the Eulerian coordinates are transformed according to

∂φ

∂x
= J (φ, Y, Z),

∂φ

∂y
= J (X, φ, Z),

∂φ

∂z
= J (X, Y, φ), (A 5)

where J is the Jacobian of the transformation. We neglect Coriolis forces and consider
a single wave component that propagates in the x-direction; hence we assume that
all quantities are independent of the y-coordinate. The Navier–Stokes equations and
the continuity equation correct to second order in the wave steepness, are (e.g. Weber
2003):

∂2x

∂t2
− ν∇L

∂x

∂t
= − 1

ρ

∂

∂xL

(p + ρgz) − 1

ρ
J (p, z)

+ ν

[
J

(
∂2x

∂t∂xL

, z

)
+ J

(
x,

∂2x

∂t∂zL

)
+

∂

∂xL

J

(
∂x

∂t
, z

)
+

∂

∂zL

J

(
x,

∂x

∂t

)]
, (A 6)
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∂2z

∂t2
− ν∇L

∂z

∂t
= − 1

ρ
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(p + ρgz) − 1

ρ
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[
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(
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(
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(
x,

∂z

∂t

)]
,

(A 7)

∂x

∂xL

+
∂z

∂zL

= −J (x, z). (A 8)

The linear solutions are formally identical to the Eulerian solutions, and their

derivation is well documented in the literature (e.g. Hansen & Ahmad 1971; Weber &
Saetra 1995). When the linear solutions are inserted in the mean momentum equations
we obtain to the lowest order

∂2x

∂t2
− ν

∂3x

∂t∂z2
L

= −Q − νu0k
2

{
4 e2kzL + 6

γ 2

k2

E2

F
e2γ zL

− 4
γ 2

k2

(
E
F

cos γ zL +
E(1 − 2E)

F
sin γ zL

)
eγ zL

}
e−2αxL, (A 9)

where Q is an unknown pressure gradient force independent of the vertical coordinate,
and E corresponds to the elasticity parameter for the wavenumber k. The particular
solution to this equation (with Q =0) yields both the Stokes drift and the boundary
layer solution. If we make the partition ∂x/∂t =U (E) + U (p), where the latter part is
the particular solution, we find that the quasi-Eulerian part U (E) is governed by

∂U (E)

∂t
− ν

∂2U (E)

∂z2
L

= −Q. (A 10)

This is in essence the same equation as (2.28). For a freely drifting slick, the dynamic
surface boundary condition is (e.g. Weber & Saetra 1995)

ρν

[
∂U (E)

∂zL

+
∂U (p)

∂zL

+ H (x̃, z̃, p̃)

]
= − ∂σ

∂xL

, zL = 0. (A 11)

Here H is a nonlinear contribution from the wave solutions (marked with a tilde).
This boundary condition expresses that the shear stress and the wave-induced stress
at the surface must be balanced by the mean surface tension gradient. Equation (A 11)
can be rewritten using the virtual wave stress τ according to the definition

τ = −ρν

(
∂U (p)

∂zL

(zL = 0) + H (x̃, z̃, p̃)

)
. (A 12)

By explicitly calculating the terms on the right-hand side of this equation, which only
depends on the wave solutions, we obtain (2.34).
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